DUAN Ping1,SONG Ji-lei1,JIANG Bo-rui1,CHEN Long1,LI Wen-qing1,HU Xiang2,LIU Guang-rui1. Particle-in-Cell Simulation on Effects of Magnetic Field onDischarge Characteristics and Performance of Hall Thruster[J]. Journal of Propulsion Technology, 2020, 41(1): 194-204.
[1] Cusson S E, Georgin M P, Dragnea H C, et al. On Channel Interactions in Nested Hall Thrusters[J]. Journal of Applied Physics, 2018, 123(13).
[2] 毛根旺, 韩先伟, 杨 涓, 等. 电推进研究的技术状态和发展前景[J]. 推进技术, 2000, 21(5): 1-5.
[3] Karadag B, Cho S, Funaki I. Thrust Performance, Propellant Ionization, and Thruster Erosion of an External Discharge Plasma Thruster[J]. Journal of Applied Physics, 2018, 123(15).
[4] 丁永杰, 扈延林, 颜世林, 等. 聚焦磁场及发散磁场对霍尔推力器壁面侵蚀的影响研究[J]. 推进技术, 2015, 36(5): 795-800.
[5] 鄂 鹏, 段 萍, 江滨浩, 等. 磁场梯度对Hall推力器放电特性影响的实验研究[J]. 物理学报, 2010, 59(10): 7182-7190.
[6] Garrigues L, Hagelaar G J M. Bareilles Model Study of the Influence of the Magnetic Field Configuration on the Performance and Lifetime of a Hall Thruster[J]. Physics of Plasmas, 2003, 10(12): 4886-4892.
[7] Dorf L , Raitses Y , Fisch N J . Effect of Magnetic Field Profile on the Anode Fall in a Hall-Effect Thruster Discharge[J]. Physics of Plasmas, 2006, 13(5).
[8] Litvak A A, Fisch N J. Rayleigh Instability in Hall Thrusters[J]. Physics of Plasmas, 2004, 11(4): 1379-1383.
[9] Komurasaki K, Arakawa Y, Takegahara H. An Overview of Electric and Advanced Propulsion Activities in Japan[J]. Spacecraft Propulsion, 2000, 465: 15-19.
[10] Hirokazu T, Yohei N, Toshiaki Y. Hall Thruster Research at Osaka University[R]. AIAA 99-2570.
[11] 鄂 鹏, 于达仁, 武志文, 等. 磁场强度对霍尔推力器放电特性影响的实验研究[J]. 物理学报, 2009, 58(4): 2535-2542.
[12] Ding Yongjie, Yu Daren, Wu Zhiwen. Parameters Distribution along the Channel Axis in the Scaling Designed Stationary Plasma Thruster[J]. Plasma Science and Technology, 2006, 8(6): 716-719.
[13] 何琳琳. 霍尔推力器壁面腐蚀形貌演化结构稳定性研究[D]. 哈尔滨:哈尔滨工业大学, 2009.
[14] 杨晶晶. 磁场对霍尔推力器低频振荡的影响[D]. 哈尔滨:哈尔滨工业大学, 2009.
[15] Yu Daren, Liu Hui, Fu Haiyang. Effect of Magnetic Mirror on the Asymmetry of the Radial Profile of Near-Wall Conductivity in Hall Thrusters[J]. Plasma Science and Technology, 2009, 11(3): 314-320.
[16] 刘 辉, 吴勃英, 鄂 鹏, 等. ATON型Hall推力器缓冲区预电离问题研究[J]. 物理学报, 2010, 59(10):7203-7208.
[17] 邓立赟. 霍尔推力器磁场位形及其对放电影响的研究[D]. 大连:大连理工大学, 2010.
[18] 邓立赟, 蓝红梅, 刘 悦. 霍尔推力器磁场位形及其优化的数值研究[J]. 物理学报, 2011, 60(2).
[19] Liu Chao, Liu Yue, Ma Zhaoshuai. Effect of Equilibrium Current Profiles on External Kink Modes in Tokamaks[J]. Plasma Science and Technology, 2014, 16(8): 726-731.
[20] 段 萍, 覃海娟, 周新维, 等. 霍尔推进器壁面材料二次电子发射及鞘层特性[J]. 物理学报, 2014, 63(8).
[21] 段 萍, 周新维, 沈鸿娟, 等. 霍尔推进器等离子体鞘层特性的Particle-in-Cell模拟[J]. 高电压技术, 2013, 39(7): 1557-1562.
[22] Hu Xiang, Duan Ping, Song Jilei, et al. Study on the Influences of Ionization Region Material Arrangement on Hall Thruster Channel Discharge Characteristics[J]. Plasma Science and Technology, 2018, 20(2).
[23] 程佳兵, 康小录, 杭观荣, 等. 磁场对高电压霍尔推力器性能影响研究[J]. 推进技术, 2019, 40(3): 714-720.
[24] 高志勇. 基于粒子方法的霍尔推力器放电特性数值模拟研究[D]. 哈尔滨:哈尔滨工业大学, 2018.
[25] Yu Daren, Shaowei Qing , Liu Hui, et al. Particle-in-Cell Simulation for the Effect of Segmented Electrodes near the Exit of an Aton-Type Hall Thruster on Ion Focusing Acceleration[J]. Contributions to Plasma, 2011, 51(10): 955-961.
[26] Yu Daren, Zhang Fengkui, Liu Hui, et al. Effect of Electron Temperature on Dynamic Characteristics of Two-Dimensional Sheath in Hall Thrusters[J]. Physics of Plasmas, 2008, 15(10).
[27] 段 萍, 覃海娟, 周新维, 等. 离子速度对霍尔推力器壁面鞘层特性的影响[J]. 高电压技术, 2014, 40(1): 160-165.
[28] 黎 润. 阳极层霍尔推力器设计及壁面侵蚀研究[D]. 哈尔滨:哈尔滨工业大学, 2017.
[29] 鄂 鹏. 霍尔推力器通道内磁场对放电特性的影响研究[D]. 哈尔滨:哈尔滨工业大学, 2009.
[30] 刘广睿. 通道壁面材料布置及磁场对霍尔推力器放电特性影响研究[D]. 大连:大连海事大学, 2017.